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Restricted Coloring Problems

e Distance-1 (or proper) coloring: adjacent vertices receive distinct colors
e Acyclic coloring: proper coloring with no 2-colored cycle
e Star coloring: proper coloring with no 2-colored P,

Distance-1 < Acyclic

A graph G is even-hole-free if it does not contain an induced cycle with an

Y(G) < x(G) < xs(G) and  @(G) D 9,(G) D P,(G) even number of vertices.

How can we use algorithms for one coloring problem to solve another?

Theorem (Gebremedhin et. al., 2008). If G is a chordal graph, then every
proper coloring of G is also an acyclic coloring.

Chordal graphs can be colored in linear time = algorithm for

acyclic coloring on chordal graphs!

Algorithms

Acyclic coloring

If we know our graph is even-hole-free, we can simply run any algorithm/heuristic for proper coloring. How-
ever, it iIs not currently known whether even-hole-free graphs can be colored optimally in polynomial time.
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p-perfect graphs are a subset that can be colored in polynomial time, but no efficient recognition algorithm is known!
Wa proper subclass of the (-perfect graphs.

Theorem. There exists a linear-time algorithm for finding an optimal acyclic coloring of (even-hole,diamond)-free

chordal graphs

graphs.
However, even-hole-free graphs are (currently) costly to recognize (O(n'’)). But we may be able to avoid recognition.
Problem: Find an efficient robust algorithm for coloring even-hole-free graphs.

Star coloring

Theorem. There exists a linear-time algorithm for finding an optimal star coloring of a cograph G.
What about the complexity on other classes? The split graphs are an interesting case:

Problem: Determine the complexity of star coloring on split graphs.
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Free Coloring Algorithms!!

Restricted Coloring Problems on Restricted Classes of Graphs

When are Two Problems Equivalent?

Theorem. A graph G is even-hole-free if and only if every distance-1 color-
Ing of G Is also an acyclic coloring.

Corollary. If G is an even-hole-free graph, then x(G) = x.(G).

Corollary. Any algorithm for finding an optimal coloring of an even-hole-
free graph will also find an optimal acyclic coloring.
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Distance-1 < Star

A graph is trivially perfect if it does not contain C; or P, as an induced
subgraph.

Theorem. A graph G is trivially perfect if and only if every distance-1 color-
Ing of GG Is also a star coloring.

Corollary. If G is a trivially perfect graph, then x(G) = x.(G) = xs(G).

Acyclic & Star

A graph is a cograph if it does not contain P, as an induced subgraph.

Theorem. A graph G is a cograph if and only if every acyclic coloring of G
Is also a star coloring.

Corollary. If G is a cograph, then x.(G) = xs(G).

Unifying Concept: Forbidden Subgraphs

Generalizing to other restricted coloring problems:

e Distance-2 coloring: every 2-colored induced subgraph is a matching.

e Caterpillar coloring: every 2-colored induced subgraph is a disjoint collection of caterpillars.

e Path (or linear) coloring: every 2-colored subgraph is a disjoint collection of paths.
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